
tion; C, specific heat of material; u, moisture content of material; t, temperature; R, 
outer radius of cylindrical speclmen;x, variable radius of cylinder. Indices: m refers to 
parameters ef surrounding medium; 0 refers to initial state of material. 
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THERMOELECTRIC AND GALVANOMAGNETIC PROPERTIES OF SYSTEMS WITH 

MUTUALLY PENETRATING COMPONENTS 

G. N. Dul'nev and V. V. Novikov UDC 537.32 

The effective coefficients of thermal conductivity, electrical conductivity, 
thermal emf, the effective Hall mobility, and the effective Hall coefficient 
are determined. The analytical dependences obtained are compared with exper- 
imental results for a Bi--Cd alloy. 

Thermoelectrical Properties 

The equations for the current density ~e and the heat flux density (energy) ~q in a 
homogeneous substance under the superposition of electrical and thermal conduct!vities have 
the form [i] 

~==T~--XvT. (2) 

The thermal emf coefficient a is determined from (i) for Je = 0 and V~ ~ 0, i.e., 

(3) 

The coefficient of electrical conductivity ~ is determined from (i) for VT = 0, and the 
coefficient of thermal conductivity A is determined from (2) for ~e = 0. 

Let us determine the coefficients ~, u, A for a two-component layered system (Fig. la) 
when ~e and ~q are directed parallel to the layers along the X axis. The equivalent circuit 
for this structure is shown in Fig. lb. 
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Fig. i. To calculate the properties of a layered sys- 
tem: a) model of the layered structure; b, c) equiv- 
alent circuit of the structure to determine the volt- 
age drop of the electrical field parallel~nd perpen- 
dicular to the layers. 

In this case the expression for the current density <~e > passing through the layer can 
be written in the form 

( 4 )  

where ml and m2 are the volume concentrations of the first and second components, respective- 
ly. The angular brackets < > denote the average over the volume. The subscripts I and 2 
will refer, here and henceforth, to the first and second components, respectively, and 
<~ei > is the current density passing through the i-th component (i = i, 2): 

<L, > = < (5) 

Substituting (5) into (4), we obtain 

= (glm~ + %tn2)<E> --  (~g~m~ + =2czm~ < ~T > .  (6) 

Let us introduce the parameters ~II, ~i~, theeffective coefficients of electrical conductivity 
and thermal emf of the layered system when the layers are parallel to the fluxes, and let us 
write for <~e > 

<~> = ~II<f>--=lioil <vT>. (7) 

Taking account of (3), we determined ~ii, oil from (6) and (7) 

(s) 

(9) 

It is seen from (4) that when the total current�9 density <je > equals zero the current in 
the components is not zero for ~T # 0, i.e., there exists a circulation current caused by 
the difference in the thermoelectrical properties of the components. 

The electromotive force in the circulation current loop equals (see Fig. Ib) 

= (~2 -- ~I) AT, (i0) 

where AT is the temperature difference between the isotherms bounding the layered system and 
perpendicular to the X axis. 

According to the second Kirchhoff law 

= IiRi ~ ~R~. (ii) 

Here Ii and Ia are the total circulation currents flowing through the first and second com- 
ponents, respectively; RI = L/(oxS~) and R= = L/(o2S2) are the resistances of the first and 
second components to the electric current; $I = n~%~L, S~ = n2Z2L; n2 is the number of 
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l a y e r s  o f  t h e  f i r s t  :component e f  h e i g h t  ~x; n,~ i s  t h e  number o f  l a y e r s  of  :,the second compo- 
~ e n t e f h e ~ g t ~ t  ~ (~ee F i g .  l a ) .  In  the  case  Ix = I~,  then  t a k i n g  accoun t  o f  ( i0)  we d e t e r -  
mine ~r ( 1 t )  

I~ = (c~-- oh) AT 
R1 -I- R2 (12) 

in the loop. 

From (12) the expression for the circulation current density can be written in the form 

< ~ 1 >  = (~z - -  a l ) ~ l ~ ( m ~ l  + ~ 2 )  -~ < VT'>. (13) 

The expressio n for the to~al heat flux density (energy) passing through the layers be- 
comes, analogously to (5), 

< j-~ > -- (r < L~> -- ~,~ < vT.>) ml -F (%T<7~2 > -- ~ < v T > ) m  2. (14) 
->  

Hence, i f  <~e > = O, then  <jel>mx = -- <~ea>m2, and (14) can be r e w r i t t e n  

<~q> = (=i--a~)T< ~> rn~ -- (~ml § ~2m2) < V~>. (15) 

Let us rewrite (15) taking (13) into account 

< ~ > = [  (oh - ~z~)a~s~%m~m=ml~r 1 + m~% T § ~ml q- ;hrn2] < V~F >" (16) 

We therefore obtain the following effective coefficient of thermal conductivity of the 
layered system s when the layers are parallel <~q>: 

(=2 - -  cx~) 2 r T + ~,,tn 1 ~, %zrnz. ~II = . (17) 
mlG1 § m2% 

It is seen from (17) that because of the circulation currents an additional thermal con- 
ductivity occurs which equals 

A~, I1 = (~2 - -  ~)2 cyr2rnlm 2 T. (18) 
m~s, + m2~ 

If ul = ~2, then the effective coefficient of thermal conductivity is 

%lj=%lmlq-%2rr~ �9 (19) 

4 § 
Now let us examine the case when the fluxes Je and jq are directed perpendicularly to 

the layers along the Z axis. The equivalent circuit in this case is shown in Fig. ic. 

The total current density passing perpendicular to the layers equals 

Hence, 

< > = < ]el > = < ]e2>. 

-- m1< 1> + 

(20) 

(21) 

Analogously, for the heat flux 

<T0> <&>=<L> m1<v 1> + 
It is seen from (20) that no circulation currents occur in the system in this ease, 

since if <~e > = 0, then <~ea> = <~e,> = 0. Thus, <~x> and <~,> equal 

(22) 
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then we obtain from (23) 

-> 
The effective coefficient of the thermal emf am of the layered system for a direction 

<je > perpendicular to the layers has the form 

~ i  = ml~ 

Taking into account that 

we obtain 

< V 7 1 >  +m~% < v T 2 >  

ml ~ /7/2 
< @ > + < vTr > 

(25)  

~ltn2 
m ~  + m~k, 

, ( 2 6 )  

~• = (%~.2m~ + %klm2) (klm2 + k2ml)-1, (27)  

from which it is seen that upon disposition of the layers perpendicular to the streams <~e > 
and <in>, the effective coefficient of the thermal emf is independent of the electrical con- 
ductiv~ty of the components. 

The effective coefficients ofelectrical conductivity ~• and thermal conductivity %i are 
determined from (20)-(22) in the form 

~• = (ml~F~ + m2~-1 + ~p)-l; ~• = (ml~F~ + m2~F ')-~' (28) 

where A0 = mzm2(~2 -- a~)2T(klmz + k2m~) -~ is the additional electrical resistivity due to 
the thermoelectric inhomogeneities. 

Thermoelectrical Properties of a System with Mutually Penetrating Components 

The model of a structure in the form of a set of two isotropic spatially mutually pene- 
trating lattices of cubic symmetry was used in [2, 3] for the examination of two-component 
systems. It was assumed that the initial properties of the components do not vary with the 
change in concentration. An elementary cell of the model, any face of which can be oriented 
perpendicular to the gradient of the field potential, is shown in Fig. 2a. In this case, the 
two faces of the cell which are perpendicular to the gradient are isopotential planes, and 
the remaining four are planes impermeable to the current line. As is recommended in [3], 
let us divide the elementary cell by a system of two infinitely thin planes i--i and 2--2 
which are impermeable to the current lines (Fig. 2a). In this case the equivalent circuit 
is shown in Fig. 2b. 

l 

? 

s3 % 

b 

I 
Fig. 2. To calculate the thermoelectrical properties 
of a system with mutually penetrating components: a) 
elementary cell of the model; b) equivalent circuit. 
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+ 

In this case the expression for the flux density (heat, electricity) <jk > (k = e, q) 
through the elementary cell can be written in the form 

< ~ >  = C2 <7.~> 4- (1 -- C) 2 < ~ 2 >  4- 2C(1 - -  C) < ~,2>,  (29) 
+ + 

where <jk~>is the flux density passing through only the+first component; <jk2> is the flux 
density passing through only the second component; and <jk,2> is the flux density passing 
through the first and second components in sequence. 

The value C = A/L is related uniquely to the m~ volume concentration of the second com- 
ponent [2, 3] 

2C3--3C24- 1 =m2. (30) 

Using (5) and (29), the expression for the effective coefficient of the thermal emf is 
obtained as 

where Peff is an effective coefficient of electrical resistivity equal to 

Peff= {at C2 + ~(I --C) 2 4- 2C(I --C)[CaTt 4- (I -- C)aT'+ Ap]-l} -I, (32) 

where Ap = C(I-- C)(~2 -- ~,)aT[X,(l-- C) + ~2C] -~ is the additional electrical resistivity 
due to the thermoelectrical inhomogeneities. 

The effective coefficient of thermal conductivity for systems with mutually penetrating 
components %eff can be written in the form 

0 ~ff-- A%eff4- Xeff' (33) 

where &Xeff is  the add i t iona l  thermal conduct iv i ty  occurring u n d e r t h e  e f f ec t  of c i r cu l a t i on  
currents caused by the difference between the thermoelectrical properties of the system com- 
ponents; 

[ (1--C)C2 C(1--C) 2 ] 
A~eff=(a~--%) zT pt(I__C4-CZ) 4-p2C(I__C ) 4- pxC(I__C) 4-p2(I__C4-C~ ) ; (34) 

X ~ is the effective thermal conductivity in the absence of circulation currents [3], which 
equals 

X~ff= Z~C z 4- ~(1 --C) 2 + 2X~= [Et ( I - -  C) + Z2C]-L (35) 

For a quantitative confirmation of the formulas obtained for ~eff, ~eff, and ~^ff, the 
computed values were compared with experimental results for a eutectic Bi-Cd alloy ~4, 5]. 
The comparison is presented in Fig. 3 and exhibits satisfactory agreement. 

Galvanomagnetic Phenomena. Hall Effect 

The equation for the current density Je in a conductor placed in a magnetic field has 
the form 

< ~ > = a.E + ~.~H [E • B], ~. = a [I + (~dB) 21- i. (3 6) 

+ 

If the magnetic field direction B is selected parallel to the Z axis, then (36) can be 
written in the form 

~ = o . E ~ .  o~,IxHB~Eu, (37) 

= + (38) 

= ( 3 9 )  
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Na Fig. 3. Concentration dependence of the 
coefficients: i) electrical resistivity 
0eff [4]; 2) thermal conductivity Xeff 

~8 [5]; 3) thermal emf aeff [4]; 4) Hall co- 
efficient Reff [4] for the eutectic alloy 
Bi--Cd. Curves I-IV are a computation us- 

~ ing (31), (32), (33), (64), respectively; 
the points are experimental data. R, 
cm~/C; X, W/m~ ~V/~ ~, ~.cm. 

The Hall mobility ~H can be determined if it is assumed that Jex # 0 in the conductor 
whose dimensions are bounded, butjey = 0 and ez = 0; i.e., we obtain from (38) 

S u b s t i t u t i n g  (40) i n t o  (37) ,  we o b t a i n  

I~,~ = % [1 4,- (btgBz) 21 Ex" 

The Hall coefficient R H equals 

(41) 

Taking (41) into account, 

R , ,  = - ( T , . & ) - ' .  

(42) becomes 

Rr~' = p H {or [I @ (W~Bz)2]} -i .  

(42) 

(43) 

In a weak magnetic field (~HB z << i), there follows from (43) that 

R H = ~ua-1.  ( 4 4 )  

Let us determine the Hall mobility ~H and Hall coefficient R H for a layered system (Fig. 
la). If the layers are perpendicular to the current flowing through the specimen Jz and 
parallel to the magnetic field Bx, then the boundary conditions are written in the form 

<~> = <]z~>=</~2>; <1,j>=m~<jy~>q m2< 2>----0, (45) 

<Ez > = m,  < E z t > - l - m ~ < E z 2 > ; <  E u >  = < Eut 2> = < Eg2> .  (46) 

The mean current density passing through the i-th component parallel to the X axis (i = 
i, 2) 

< ~i  > = crMi</~i > - -  %,i~fB~ < Ey~ > ,  (47 )  

and the current parallel to the y axis <Jyi > equals 

(48) 

It is seen from (45)that if the galvanomagnetic properties of the components are dis- 
tinct, then a Hall circulation current parallel to the y axis occurs in the system. The 
equivalent circuit for the Hall current has the form shown in Fig. lb. 

The effective Hall mobility ~H can be determined from (45) and (46), with (47) and (48) 
taken into account, in the form 

~ f  -- nh_m2 (~MI~ - -  ~2~2" n~j B 2~ ~ (ml~m -4- m2~2) (atoM2 -4- rn2~m) " (49) 
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a ~, b 

Fig. 4. To calculate the effective Hall 
mobility of a system with mutually pene- 
trating components: a) equivalent cir- 
cuit of an elementary cell for a current 
flowing through the specimen, and b) 
equivalent circuit of an elementary cell 
for the Hall voltage. 

The first member in the denominator of (49) is much less than the second in a weak mag- 
netic field, and ~H becomes 

~n = (m~ + ~2) ("h~. + nh~) (50) 

Taking account of (44), we obtain an expression for the effective Hall coefficient from 
(50): 

tn1~R~ + me%R[ (51) 
e [  = ,nlz, + m2% 

Let us determine the effective Hall mobility and Hall coefficient when the layers are 
parallel to the current_~<~ex >~ and the magnetic field %. The equivalent circuit to deter- 
mine the Hall voltage <Ez> is shown in Fig. ic. In this case the total Hall voltage is 

<~ > = m ~ < ~  > + m~ < ~  > .  (52) 

Hence, according  to (40),  

= -  < 

Taking account of (53), we determine the effective Hall mobility from (52): 

We obtain from (54) 
in the form 

~ = m,~' + ~ . (54) 

the expression for the Hall coefficient RH I in a weak magnetic field 

m~a,R[ + .~o=R[ 
~ = m~ + .~ (55) 

Let us determine the effective Hall mobility and Hall coefficient when the layers are 
parallel to the current passing through the specimen and perpendicular to the magnetic field. 
The equivalent circuit for the Hall current has the form shown in Fig. lb. In this case the 
boundary conditions are written as follows: 

=0, (56) 

<ix> = <~x1> = < ff~>; <~> = < ~m> = < ft,2>. (57) 

We obtain the effective Hall mobility from (56) and (57) : 

~'%'~Y+~f (58) 

We determine the Hall coefficient R~I I in a weak magnetic field from (58) in the form 

m,o~R", + ' " ,'/"/2q 2 R 2 
(59) 
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Effective Hall Mobility of Systems with MutuallyPenetrating Components 

In determining the approximate expression for the effective Hall mobility we divide the 
elementary cell into separate elements. The equivalent circuit of the elementary cell of 
the model for the current <~ez> flowing through the specimen, obtained by partitioning+the 
elementary cells by the planes i--I and 2--2 which are impermeable to the current line <jez >, 
is shown in Fig. 4a. The equivalent circuit for the Hall circulation current, obtained by 
partitioning t~e elementary cell by the plane 3--3, which is impermeable to the Hall circula- 
tion current <Jey>, and by the isopotential plane 2--2 for the Hall voltage <~y>, is shown 
in Fig. 4b. 

By using the results obtained [(50), (54), (58)], an expression can be written for the 
effective Hall mobility in systems with mutually penetrating components : 

~eff--H _ ~ f f  [ C 2 ~ i  + (I - -  C) z ~ .  ~iz + C (I - -  C) (o z + ~n) ~t~], (60 )  

where 

o.,%2 [c~ 7 + (i - c) ~[] 
~[o = c (l - c ) (~ . ,~ [  - (~,2~2H) z B~ H- [C%,~ q- ( l - -  C) ~m] [Ccr~2+ ( l - -C)  ~M1] ' (61) 

~I = CO~, I + O~,I OM2 (1 --C)[ffM1 (l - - C )  ~ OM2C] -1, (62)  

Ozt = (1 -- C) 6.2 + ~ [6M1 (I -- C) + oM2C] -1, (63) 

The effective Hall coefficient R H in a weak magnetic field can be determined from (61) eff 
in the form 

�9 

C(1- -C) (~ l~z  (6t -]-(Ytz)R~o , (64)  
C~ z + (1 - -  C) o 1 

where 

Cfflm~ I -~- ( I  - -  C) ~2R~ 
R~~ --- " Co" 1 -+- (1 - -  C) o'~ (65)  

H 
A comparison of the concentration dependence of Ref f computed by means of (64) with the 

experimental results for the eutectic alloy Bi--Cd is presented in Fig. 3 and exhibits good 
qualitative agreement. 

NOTATION 
+ 

~, flu+x density (heat, electricity); ~, electrical field intensity; 7T, temperature 
gradient; B, magnetic field intensity; o, a, %, coefficients of electrical conductivity, 
thermal emf, thermal conductivity; ~d, drift mobility of the carriers; ~H Hall mobility; 
R H, Hall coefficient; mi, volume concentration of the i-th component; e, electromotive force. 

1. 

2. 
3. 

, 

5. 
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